Graphite and Hybrid Nanomaterials as Lubricant Additives

نویسندگان

  • Zhenyu J. Zhang
  • Dorin Simionesie
چکیده

Lubricant additives, based on inorganic nanoparticles coated with organic outer layer, can reduce wear and increase load-carrying capacity of base oil remarkably, indicating the great potential of hybrid nanoparticles as anti-wear and extreme-pressure additives with excellent levels of performance. The organic part in the hybrid materials improves their flexibility and stability, while the inorganic part is responsible for hardness. The relationship between the design parameters of the organic coatings, such as molecular architecture and the lubrication performance, however, remains to be fully elucidated. A survey of current understanding of hybrid nanoparticles as lubricant additives is presented in this review.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synergistic Effect of MoS2 and SiO2 Nanoparticles as Lubricant Additives for Magnesium Alloy–Steel Contacts

The tribological performances of the SiO₂/MoS₂ hybrids as lubricant additives were explored by a reciprocating ball-on-flat tribometer for AZ31 magnesium alloy/AISI 52100 bearing steel pairs. The results demonstrated that the introduction of SiO₂/MoS₂ hybrids into the base oil exhibited a significant reduction in the friction coefficient and wear volume as well as an increase in load bearing ca...

متن کامل

Self-dispersed crumpled graphene balls in oil for friction and wear reduction.

Ultrafine particles are often used as lubricant additives because they are capable of entering tribological contacts to reduce friction and protect surfaces from wear. They tend to be more stable than molecular additives under high thermal and mechanical stresses during rubbing. It is highly desirable for these particles to remain well dispersed in oil without relying on molecular ligands. Borr...

متن کامل

Carbon quantum dot/CuSx nanocomposites towards highly efficient lubrication and metal wear repair.

Mechanical wear accounts for one third of present global energy consumption. However, it still lacks an efficient lubricant to simultaneously achieve a highly efficient lubrication and metal wear repair. Herein, we report that carbon quantum dots (CQDs)/CuSx nanocomposites show enhanced lubrication and metal wear surface repair abilities when used as additives. The highly efficient lubrication ...

متن کامل

Influences of Temperature, Concentration and Shear Rate on Rheological Behavior of Nanofluid: An Experimental Study with Al2O3-MWCNT/10W40 Hybrid Nano-Lubricant

In this experimental study, the rheological behavior of Al2O3-MWCNT (90%:10%)/10W40 hybrid nano-lubricant has been determined at the temperature range of 5°C to 55°C. Al2O3 nanoparticles (average size of 50 nm) and MWCNTs (inner and outer diameter of 2-6 nm and 5-20 nm, respectively) were dispersed in engine oil (10W40) to prepare 0.05%, 0.1%, 0.2...

متن کامل

The effect of rotation speed to traverse speed ratio and number of welding passes on thermo-mechanical stability of severely plastic deformed aluminum joined by friction stir welding and graphite/Al2O3 hybrid powder

In this study, thermo-mechanical stability of two-pass constrained groove pressing (CGP) AA1050 sheets towards friction stir welding (FSW) employing hybrid powder (%50vol. micrometric graphite powder+%50vol. α-Al2O3 nanoparticles) was investigated by examining its microstructural evolutions and mechanical properties. FSW was carried out via different process variables in order to reach the high...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014